Friday, 15 September 2017

Moving Average Hintergrund


Hallo, das wird ein sehr einfacher Artikel, aber Sie werden es sehr hilfreich finden. Es geht um Hintergrund-Extraktion aus einem Video. Angenommen, Sie sind Video von Footage von Verkehr gegeben, kann eine Sache wie diese sein. Verkehr in Indien. Und Sie werden gebeten, einen ungefähren Hintergrund zu finden. Oder so etwas. Hintergrund-Extraktion kommt wichtig in der Objektverfolgung. Wenn Sie bereits ein Bild von der nackten Hintergrund, dann ist es einfach. Aber in vielen Fällen haben Sie nicht ein solches Bild und so, müssen Sie eine zu erstellen. Das ist, wo Running Average kommt praktisch. (Ich dachte darüber nach, wenn ein Mann eine Frage in SOF gefragt hat.) Die Funktion, die wir hier verwenden, um Running Average zu finden, ist cv2.accumulateWeighted (). Wenn wir z. B. ein Video anschauen, halten wir jedes Einzelbild an diese Funktion weiter, und die Funktion hält die Mittelwerte aller Frames, die ihr nach der folgenden Beziehung zugeführt werden, fest: src ist nichts anderes als unser Quellbild. Es kann Graustufen - oder Farbbild und entweder 8-Bit - oder 32-Bit-Gleitkomma sein. Dst ist das Ausgabe - oder Akkumulatorbild mit denselben Kanälen wie das Quellbild und es ist entweder ein 32-Bit - oder ein 64-Bit-Gleitkomma. Auch sollten wir es zuerst auf einen Wert deklarieren, der als Anfangswert genommen wird. Alpha ist das Gewicht des eingegebenen Bildes. Laut Docs regelt alpha die Aktualisierungsgeschwindigkeit (wie schnell der Akkumulator 8220forgets8221 um frühere Bilder handelt). In einfachen Worten, wenn Alpha ein höherer Wert ist, versucht das durchschnittliche Bild auch sehr schnelle und kurze Änderungen in den Daten zu erfassen. Wenn es niedriger Wert ist, wird der Durchschnitt träge und es wird nicht betrachten schnelle Änderungen in den Eingabebildern. Ich werde es ein wenig mit Hilfe von Bildern am Ende des Artikels erklären. In oben Code habe ich zwei Mittelwerte gesetzt, eine mit höheren Alpha-Wert und eine andere mit niedrigeren Alpha-Wert, so können Sie verstehen, Wirkung von Alpha. Zuerst werden beide auf den Anfangsrahmen des Captures gesetzt. Und in Schleife erhalten sie aktualisiert. Sie können einige Resultate in der SOF Verbindung sehen, die ich bereits zur Verfügung stellte. (Ich habe die Ergebnisse hier, können Sie den Code und Alpha-Wert dort): Ich habe meine Webcam und gespeichert Original-Frame und laufenden Durchschnitt zu einem bestimmten Zeitpunkt. Dieses ist ein Rahmen von einem typischen Verkehrsvideo, das von einer stationären Kamera genommen wird. Wie Sie sehen können, geht ein Auto auf die Straße, und die Person versucht, die Straße zu einem bestimmten Zeitpunkt zu überqueren. Aber sehen Sie den laufenden Durchschnitt zu diesem Zeitpunkt. Es gibt keine Person und Auto in diesem Bild (Eigentlich ist es da, haben einen engen Blick, dann werden Sie es sehen, und die Person ist klarer als Auto, da Auto bewegt sich sehr schnell und über das Bild, es hat nicht viel Effekt auf den Durchschnitt, aber die Person ist für eine lange Zeit, da er langsam und bewegt sich über die Straße.) Jetzt müssen wir sehen, die Wirkung von Alpha auf diese Bilder. Do Adaptive Moving Averages Lead zu besseren Ergebnissen Moving-Mittelwerte sind ein Favorit Werkzeug der aktiven Händler. Allerdings, wenn die Märkte zu konsolidieren, führt dieser Indikator zu zahlreichen whipsaw Trades, was zu einer frustrierenden Reihe von kleinen Siegen und Verluste. Analytiker haben Jahrzehnte versucht, den einfachen gleitenden Durchschnitt zu verbessern. In diesem Artikel betrachten wir diese Bemühungen und finden, dass ihre Suche zu nützlichen Trading-Tools geführt hat. (Für den Hintergrund, der auf einfachen gleitenden Durchschnitten überprüft, überprüfen Sie einfaches bewegendes Mittel, das Trends hervorhebt.) Vor - und Nachteile der bewegenden Durchschnitte Die Vor-und Nachteile der gleitenden Durchschnitte wurden von Robert Edwards und von John Magee in der ersten Ausgabe der technischen Analyse von zusammengefasst Aktien-Trends. Wenn sie sagten, und es war schon im Jahre 1941, dass wir die Entdeckung (obwohl viele andere es vorher gemacht haben), dass durch die Mittelung der Daten für eine bestimmte Anzahl von Tagen konnte man eine Art von automatisierten Trendlinie, die definitiv interpretieren würde die Veränderungen der TrendIt schien fast zu gut um wahr zu sein. Tatsächlich war es zu schön, um wahr zu sein. Mit den Nachteilen überwiegen die Vorteile, Edwards und Magee schnell aufgegeben ihren Traum vom Handel von einem Strand Bungalow. Aber 60 Jahre nachdem sie diese Worte geschrieben haben, bestehen andere darin, ein einfaches Werkzeug zu finden, das mühelos den Reichtum der Märkte liefern würde. Simple Moving Averages Um einen einfachen gleitenden Durchschnitt zu berechnen. Fügen Sie die Preise für den gewünschten Zeitraum und dividieren durch die Anzahl der Perioden ausgewählt. Die Suche nach einem fünftägigen gleitenden Durchschnitt würde Summierung der fünf letzten Schlusskurse und die Teilung von fünf. Wenn das letzte Schließen über dem gleitenden Durchschnitt liegt, würde die Aktie als in einem Aufwärtstrend betrachtet werden. Abwärtstrends werden durch den Handel unter dem gleitenden Durchschnitt definiert. (Für mehr, siehe unsere Moving Averages Tutorial.) Diese Trend-Definition-Eigenschaft ermöglicht es, dass gleitende Durchschnitte, um Trading-Signale zu generieren. In ihrer einfachsten Anwendung kaufen Händler, wenn Preise über dem gleitenden Durchschnitt sich bewegen und verkaufen, wenn Preise unter dieser Linie übersteigen. Ein solcher Ansatz ist garantiert, um den Händler auf die rechte Seite jedes bedeutenden Handels zu setzen. Leider, während Glättung der Daten, bewegte Durchschnitte werden sich hinter der Markt-Aktion und der Händler wird fast immer geben einen großen Teil ihrer Gewinne auf sogar die größten Gewinn-Trades. Exponential Moving Averages Analysten scheinen die Idee des gleitenden Durchschnitts zu mögen und haben jahrelang versucht, die mit dieser Verzögerung verbundenen Probleme zu reduzieren. Eine dieser Innovationen ist der exponentielle gleitende Durchschnitt (EMA). Dieser Ansatz weist den jüngsten Daten eine relativ höhere Gewichtung zu und bleibt dadurch der Preisaktion näher als ein einfacher gleitender Durchschnitt. Die Formel zur Berechnung eines exponentiellen gleitenden Mittelwertes ist: EMA (Gewicht schließen) ((1-Gewicht) EMAy) Dabei: Gewicht ist die vom Analytiker gewählte Glättungskonstante EMAy ist der exponentielle gleitende Durchschnitt von gestern Ein gemeinsamer Gewichtungswert ist 0,181, Ist nah an einem 20-tägigen einfachen gleitenden Durchschnitt. Eine andere ist 0,10, was ungefähr ein 10-Tage-gleitender Durchschnitt ist. Obwohl es die Verzögerung verringert, kann der exponentielle gleitende Durchschnitt nicht ein anderes Problem mit sich bewegenden Durchschnittswerten ansprechen, was bedeutet, dass ihre Verwendung für Handelssignale zu einer großen Anzahl von verlierenden Geschäften führen wird. In neuen Konzepten in technischen Handelssystemen. Welles Wilder schätzt, dass Märkte nur Trend ein Viertel der Zeit. Bis zu 75 Handelsgeschäfte beschränken sich auf enge Bereiche, wenn gleitende durchschnittliche Kauf - und Verkaufssignale wiederholt erzeugt werden, da sich die Preise rasch und deutlich über dem gleitenden Durchschnitt bewegen. Um dieses Problem zu lösen, haben mehrere Analysten vorgeschlagen, den Gewichtungsfaktor der EMA-Berechnung zu variieren. (Weitere Informationen finden Sie unter Wie werden gleitende Durchschnitte im Handel verwendet) Anpassung der gleitenden Durchschnitte an die Marktaktivität Eine Methode, um die Nachteile der gleitenden Durchschnitte zu adressieren, besteht darin, den Gewichtungsfaktor mit einem Volatilitätsverhältnis zu multiplizieren. Dies würde bedeuten, dass der gleitende Durchschnitt weiter von dem aktuellen Preis in volatilen Märkten wäre. Dies würde Gewinner zu laufen. Als Trend geht ein Ende und die Preise konsolidieren. Würde der gleitende Durchschnitt näher an der gegenwärtigen Marktbewegung herangehen und theoretisch dem Händler erlauben, die meisten Gewinne, die während des Trends erfasst werden, zu halten. In der Praxis kann das Volatilitätsverhältnis ein Indikator wie die Bollinger-Bandbreite sein, die den Abstand zwischen den bekannten Bollinger-Bändern misst. Perry Kaufman schlug vor, die Gewichtsvariable in der EMA-Formel mit einer Konstante zu ersetzen, die auf dem Wirkungsgradverhältnis (ER) basiert, in seinem Buch "New Trading Systems and Methods". Dieser Indikator soll die Stärke eines Trends messen, der in einem Bereich von -1,0 bis 1,0 liegt. Es wird mit einer einfachen Formel berechnet: ER (Gesamtpreisänderung für Periode) (Summe der absoluten Preisänderungen für jeden Balken) Betrachten Sie eine Aktie, die einen Fünfpunktbereich pro Tag hat, und am Ende von fünf Tagen insgesamt gewonnen hat Von 15 Punkten. Dies würde zu einem ER von 0,67 führen (15 Punkte Aufwärtsbewegung geteilt durch den gesamten 25-Punkte-Bereich). Wäre dieser Bestand um 15 Punkte gesunken, wäre der ER -0,67. (Für weitere Trading-Tipps von Perry Kaufman, lesen Sie Losing To Win, die Strategien für die Bewältigung der Handelsverluste skizziert.) Das Prinzip der Trends Effizienz basiert auf, wie viel Richtungsbewegung (oder Trend) Sie pro Einheit der Preisbewegung über ein Definierten Zeitraum. Ein ER von 1,0 zeigt an, dass der Bestand in einem perfekten Aufwärtstrend liegt -1,0 repräsentiert einen perfekten Abwärtstrend. Praktisch werden die Extreme selten erreicht. Um diesen Indikator zu finden, um den adaptiven gleitenden Durchschnitt (AMA) zu finden, müssen Händler das Gewicht mit der folgenden komplexen Formel berechnen: C (ER (SCF SCS)) SCS 2 Wobei: SCF die Exponentialkonstante für die schnellste ist EMA zulässig (meist 2) SCS ist die Exponentialkonstante für die langsamste EMA zulässig (oft 30) ER ist das oben erwähnte Wirkungsgrad-Verhältnis Der Wert für C wird dann in der EMA-Formel anstelle der einfacheren Gewichtsvariablen verwendet. Obwohl es schwierig ist, von Hand zu berechnen, ist der adaptive gleitende Durchschnitt in fast allen Handelssoftwarepaketen als Option enthalten. (Beispiele für einen einfachen gleitenden Durchschnitt (rote Linie), einen exponentiellen gleitenden Durchschnitt (blaue Linie) und den adaptiven gleitenden Durchschnitt (grüne Linie) sind in 1 gezeigt. Abbildung 1: Die AMA ist grün und zeigt den größtmöglichen Abflachungsgrad in der Bereichsgrenze auf der rechten Seite dieser Tabelle. In den meisten Fällen ist der exponentielle gleitende Durchschnitt, der als blaue Linie dargestellt ist, der Preisaktion am nächsten. Der einfache gleitende Durchschnitt wird als rote Linie angezeigt. Die drei gleitenden Durchschnitte, die in der Figur gezeigt werden, sind alle anfällig für whipsaw Trades zu verschiedenen Zeiten. Dieser Nachteil bei den gleitenden Durchschnitten ist bisher nicht auszuschließen. Fazit Robert Colby getestet Hunderte von technischen Analyse-Tools in The Encyclopedia of Technical Market Indicators. Er schloss, Obwohl der adaptive gleitende Durchschnitt eine interessante neuere Idee mit beträchtlichem intellektuellem Reiz ist, zeigen unsere vorläufigen Tests keinen wirklichen praktischen Vorteil zu dieser komplexeren Trendglättungsmethode. Dieses bedeutet nicht, daß Händler die Idee ignorieren sollten. Die AMA könnte mit anderen Indikatoren kombiniert werden, um ein profitables Handelssystem zu entwickeln. (Mehr zu diesem Thema finden Sie unter Entdeckung von Keltner-Kanälen und dem Chaikin-Oszillator.) Der ER kann als eigenständiger Trendindikator genutzt werden, um die profitabelsten Handelsmöglichkeiten zu erkennen. Als Beispiel zeigen Verhältnisse über 0,30 starke Aufwärtstrends und stellen potentielle Käufe dar. Alternativ kann, da sich die Volatilität in Zyklen bewegt, die Bestände mit dem niedrigsten Effizienzverhältnis als Ausbruchschancen beobachtet werden. Eine Messung der betrieblichen Rentabilität eines Unternehmens. Er entspricht dem Ergebnis vor Zinsen, Steuern und Abschreibungen. Englisch: eur-lex. europa. eu/LexUriServ/LexUri...0083: EN: HTML Eine Finanzierungsrunde, bei der die Anleger Aktien von einem Unternehmen mit einer niedrigeren Bewertung kaufen als die Bewertung am. Englisch: eur-lex. europa. eu/LexUriServ/LexUri...0053: EN: HTML Eine Abkürzung zur Schätzung der Anzahl von Jahren, die erforderlich sind, um Ihr Geld mit einer bestimmten jährlichen Rendite zu verdoppeln (siehe zusammengesetzte jährliche Zinssätze), die auf einem Darlehen belastet oder auf einer Anlage über einen bestimmten Zeitraum realisiert werden Investment-Grade-Sicherheit durch einen Pool von Anleihen, Darlehen und andere Vermögenswerte gesichert. CDOs nicht in einer Art von Schulden spezialisiert. Das Jahr, in dem der erste Zustrom von Investitionskapital an ein Projekt oder ein Unternehmen geliefert wird. Dies markiert, wenn das Kapital ist.

No comments:

Post a Comment